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Abstract: 
 
This paper examines results for video streaming experiments over a wireless network.  Building on an 
existing simulator architecture an API is created to allow for simulation of applications.  This simulator is 
then used to simulate the real conditions that occurred in the experimentation.  The QoS seen in the real 
experimentation is attempted to be duplicated, and then explained by the simulator results. 
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1. Introduction 
 

There is an increasing amount of convergence in the home entertainments electronics industry.  
There are both technological and marketing reasons for this.  Advances in compression technology coupled 
with lower costs and standardization of integrated computing devices has enabled the development of all in 
one devices.  On the demand front with the average home having multiple media devices such as DVDs, 
computers, gaming consoles and stereos there is an increasing need to have them all interconnect 
seamlessly.  Currently there are several manufactures such as Sony and Creative that are manufacturing 
devices that multifunctional.  However, these devices are still relatively immature and it is uncertain what 
the home electronics market will look like in the future. 

One thing that is certain to happen in the future is the gradual elimination of wired networks in 
favor of wireless ones.  Wireless networks are slower but have advantages.  Wireless networks eliminate 
much of the clutter of connecting an increasing amount of devices with wires.  Also wireless networks give 
added mobility, which is practical for devices such as laptops. 

The streaming of video media to one of many wireless displays is becoming more common.  If 
bandwidth is unlimited then reliable streaming video is relatively easy to implement.  However, as the bit 
rate increases with higher fidelity video formats (HDTV) maintaining a higher QoS (quality of service) 
becomes difficult.  This report looks at issues with streaming video media over a wireless network. 

Two experiments were run to assess the performance of live streaming of video.  The server 
encodes a MPEG-4 stream using DVD quality settings and streams it to a display that uses windows media 
player.  In one test setup, (figure 1) both the server and the display are both connected wirelessly through 
an access point.  In the other test setup, (figure 2) the sever is connected to the access point through a wired 
network, while the media display is connected wirelessly.  The wireless connection uses the 802.11b 
standard. 
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 Figure 1 Test setup 1 
 
 
 Figure 2 Test setup 2 
 

Using test setup 2 the video stream is broadcasted correctly.  Using test setup 1 the video stream 
does not work correctly.  The audio comes through fine but the video is choppy.  The video plays for 
around 5 seconds and then stops working after 5 seconds constantly repeating this on-off pattern.  From 
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assignment #2 it is found that there is twice as much bandwidth using a wired rather then using a wireless 
server.  This is because when the server is wireless, the server must send the information first to the access 
point and then the access point sends the information to the display.  It was also found that other then 
halving the there is very little other inefficiency.  One thing to note is that the wait time does goes up more 
then twice as much. 

Using a simulator this report investigates why the effect of the on-off choppy video occurred in 
test setup 2.  The simulator architecture is also discussed. 
 
2. Simulator architecture 
 

The internals of the simulator and the verification of its performance is discussed in assignment #2 
and won’t be repeated.  However, the application programming interface (API) is discussed in this section. 

The goal of the simulator is to provide an API that is very similar to programming under a 
conventional operating system such as windows or linux.  The functions detailed below should be very 
familiar as they emulate operating system calls. 
 
2.1  Process Overrides 
 
An application should implement the following functionality to operate properly 
 
void Init() 
This function is called when the network is first initialized.  It can be used to create sockets 
 
void OnStart() 
This function is called when the network is initialized but right before anything is ran.  It can be used to 
obtain IP addresses 
 
Void Run() 
This function is called every 1 ms by the architecture to act as a thread that is running continuously. 
 
void UserDrawStats(CDC *pDC, CPoint Offset, CPoint &Size) 
This function is called by the network to allow the application to display data on the screen while running 
 
2.2 Event Overrides 
 
These following functions are ones that should be overridden if the application requires any event based 
message handling 
 
void OnMessageReceived(int SourceIP, int Port) 
This function is called when a message has been received.  The port number and source IP are passed 
through to distinguish which socket has the event. 
 
void OnMessageSent(int Port) 
This function is called when a socket message is completely sent via the network card. 
 
void OnSaveStats() 
This function is called once a second to allow the process to save any statistics into the archive.  It provides 
a nice way to store the data so it can be automatically averaged and written out when a program is done 
executing. 
 
2.3 Utility function calls 
 
There is a class in the network that handles all of the statistics archiving.  All of the base statistics such as 
the physical layer efficiency and the network cards message count are automatically stored and can be 
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written out.  However in order to store any statistics that are generated by an application the following 
functions are used 
 
int GetCustomStats(Process *pProcess, char *pName) 
This function gets a index to be used for later archiving. 
 
void AddCustomStats(int index, float value) 
Given an index obtained with GetCustomStats this function adds a value into the archive 
 
2.4 DNS services 
 
A network that dynamically allocates IP addresses requires a DNS service.  The following functions 
implement the service 
 
IPTYPE DNSGetIPAddress(char *&Name) 
This function return an IPAddress given a name.  If the name is not unique which it should be this function 
adds a number at the end of the name because no two names in the network can be the same 
 
IPTYPE DNSFindAddress(char *Name) 
Given a name this function returns the IP address 
 
2.5 Timers 
 
NGetTicks() 
This function returns the current time in ms. 
 
NGetUTicks() 
This function returns the current time in us. 
 
2.6 Socket Functionality 
 
These function calls are made to be similar to other operating systems socket calls.  These work in tandem 
to the application override functions OnMessageSend and OnMessageReceived. 
 
int CreateSocket(int PortNumber, SOCKETTYPE SocketType, Process *pProcess = NULL); 
This function create a socket and returns its ID.  
 
void SetSockOpt(int Socket, int Option) 
This function sets up options of the socket 
 
bool Send(int Socket, char *lpBuf, int nBufLen) 
This function broadcasts a message 
 
bool SendTo(int Socket, int DestIP, char *lpBuf, int nBufLen) 
This function sends a message to a specific address 
 
int Receive(int Socket, char *lpBuf, int nBufLen) 
This function should be called in the OnMessageReceived event function.  It returns the data that is 
received. 
 
2.7 Network setup functions 
 
The network class only requires two functions to be overridden 
 
void SetupNetwork() 
This function setup up the network.  A typical network would create its processes and set their options. 
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void SaveNetworkStats() 
This function is called at the end of a testing run.  It saves the statistics of the network.  It should be 
overridden so the user can determine exactly which statistics to save. 
 
The network has the following options that should be set and determine the nature of the testing run 
TType = MultiRun or ContRun 
The network can be setup to run continuously or be setup to run a certain amount of times then stop 
running and output its statistics 
 
RunsPerRun 
This variable determines how many seconds each run in multirun runs for. 
 
m_NumMultiRuns  
This variable determines how many runs it does in multi run.  E.g run 5 times for 100 seconds each. 
 
m_nSaveStats 
This variable is generated internally and indexes which run is occurring.  It is used to index the archiving of 
the statistics but can also be used to adjust the setup in the SetupNetwork function.  An example is to 
increase traffic as m_nSaveStats is increasing so networking performance testing can be batched together. 
 
3. Application programming 
 

Using the API the video stream program is created as follows.  The server is very simple.  It simply 
sends out simulated data (that is not generated).  The following code shows its primary functions 
 
void VideoServerProcess::Run() 
{  
 if (m_SendTime <= NGetTicks()) 
 { 
  if (m_ReadyToSend) 
  { 
   char *tBuffer = m_SendBuffer; 
   RTPINFO RTPInfo; 
   RTPInfo.TimeStamp = NGetUTicks(); 
   RTPInfo.FrameNumber = m_FrameNumber; 
   m_FrameNumber++; 
   g_Protocals.CatRTPInfo(tBuffer,RTPInfo); 
   m_pOS->Send(m_DataSocket,m_SendBuffer,m_FrameSize); 
   m_ReadyToSend = false; 
 
  } 
  else 
  { 
   m_FrameNumber++; 
   m_SkippedSending++; 
  } 
  m_SendTime += m_SendIncTime; // no jitter for now 
 } 
 
} 
 
void VideoServerProcess::OnMessageSent(int Port) 
{ 
 m_ReadyToSend = true; 
} 
 

The run function is called every 1 ms by the network.  The first thing that is checked is to see if a 
new frame is ready to send.  If it is, then is there a check to see if the previous frame has been fully sent.  If 
it has, it sends out the next frame.  If it has not it skips a frame.  The server includes a timestamp of the 
frame simply to calculate the wait time and the frame number for placement in the receive buffer. 
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The client is a bit more complex because it is the one that has to generate most of the statistics.  

The application first uses the OnMessageReceived function to receive any data.  It has a member class that 
acts as the video buffer.  The class m_VideoBuffer parses the header of the data to gets its frame number.  It 
then places the data into the proper place in the buffer. 
 
void VideoClientProcess::OnMessageReceived(int SourceIP, int Port) 
{ 
 if (Port == VIDEOCONTROLPORT) 
 {  
   
 } 
 else if (Port == VIDEODATAPORT) 
 { 
  m_pOS->Receive(m_DataSocket,m_ReceiveBuffer,MAXMESSAGESIZE); 
  m_VideoBuffer.AddData(m_ReceiveBuffer);   
 } 
 
} 
 
The run function performs most of the grunt work. 
 
void VideoClientProcess::Run() 
{  
 if (m_StreamingTime <= NGetTicks()) 
 { 
  m_CurrBufferSize = m_VideoBuffer.GetNumFrames(); 
//  ASSERT(m_CurrBufferSize < 40); 
  m_BufferSizeC += m_CurrBufferSize; 
  m_BufferSizeT++; 
 
  ArchiveInternalStats(); 
 
  bool CanPlay = false; 
  if (m_bBufferBigEnough) 
  { 
   if (m_CurrBufferSize > m_MinHBuffer) 
    CanPlay = true; 
   else 
    m_bBufferBigEnough = false; 
  } 
  else 
  { 
   if (m_CurrBufferSize > m_MaxHBuffer) 
   { 
    CanPlay = true; 
    m_bBufferBigEnough = true; 
   } 
  } 
 
  if (CanPlay) 
  {    
   char *tBuffer = m_ReceiveBuffer; 
   bool ValidData = m_VideoBuffer.GetData(tBuffer); 
   if (m_bPlayedLastFrame) 
   { 
    if (ValidData) 
    { 
     m_TotalPlayedFrames++; 
     m_RunCounter++; 
     if (m_RunCounter >= 50) 
     { 
      m_TotalPlayedRuns++; 
      m_PlayedRunSizeC += m_RunCounter; 
      m_RunCounter = 1; 
     } 
    } 
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    else 
    { 
     m_TotalPlayedRuns++; 
     m_PlayedRunSizeC += m_RunCounter; 
     m_bPlayedLastFrame = false; 
     m_RunCounter = 1; 
    } 
   } 
   else 
   { 
    if (ValidData) 
    { 
     m_TotalPlayedFrames++; 
     m_bPlayedLastFrame = true; 
     m_TotalMissedRuns++; 
     m_MissedRunSizeC += m_RunCounter; 
     m_RunCounter = 1; 
    } 
    else 
    { 
     m_RunCounter++; 
     if (m_RunCounter >= 50) 
     { 
      m_TotalMissedRuns++; 
      m_MissedRunSizeC += m_RunCounter; 
      m_RunCounter = 1; 
     } 
    } 
   } 
 
  } 
  else 
   m_NumTimesSkipped++; 
 
  m_StreamingTime += m_StreamingTimeInt; // no jitter for now 
 } 
 
} 
 

The function runs on the rate in terms of frames per second as the servers.  It first checks if it is time 
to run.  If it is time, it then checks how many frames are available in the buffer.  There is some hysteresis 
on this check.  If it is already displaying frames a smaller number of frames are required.  However if it has 
stopped because the buffer is too small it waits for the number of frames to go to a higher number before 
starting to play again.  Even if there are sufficient frames in the buffer it is not guaranteed that the frame 
required is available.  Because of congestion the current frame may not have been sent but the next one has.  
Depending if the data is valid the frame is played or not and various statistics are generated. 
 
3.1 Caveats and other Notes 
 

All of the traffic is UDP however the operating system supports fragmentation.  This was done for 
convenience because most applications fragment UDP data because of its limited packet size.  TCP is not 
going to be implemented because of the fact that the simulator is required to works only under LANS 
without any support for routing.  This means that the latencies due to routing and packet losses due to 
routing are non-existent so TCP reliability is not required.  The only two things that TCP implements that 
are potentially required are fragmentation, which is implemented in the simulator and rate control, which is 
implemented in the application level. 

One thing that the conventional OS implements that is not implemented in the simulator is using call 
back function for event handling.  When posting events the simulator posts the events to the OnReceived or 
OnSent function calls.  This forces the user to check the Source IP and Port number to determine which 
socket the event relates to.  This is accomplished through “if statements”.  Usually this can be 
accomplished through callback functions as they would replace the if statements, however because of the 
way the class hierarchy is setup it would be difficult and time consuming to implement.  As of now it is not 
implemented. 
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4. Experimentation 
 

The goal of the experimentation is to determine why when streaming video over a congested network 
the video stream fades in and out every 5 second or so.  In order to do this a network is setup with one 
Server and one Client with an access point.  The data is streaming at various rates.  The frame size of the 
data is fixed at 20000 bytes per frame but the streaming rate is variable and is ran at 45ms to 30ms (22.2 – 
33.3 fps).  The original hypothesis that is tested is that because of the fact that the access point acts as a 
buffer the extra buffering causes the choppiness.   This hypothesis also assumes that the video server 
performs no rate control and simply sends out frames blindly.  The reason for this assumption is even 
though the protocol is undocumented by Microsoft, the setup used makes use of the free version of 
Microsoft software.  Microsoft’s advertises a premium version that uses RTP (real time protocol) so it is 
assumed that the free version doesn’t have much in terms of QoS controls.  If this hypothesis is true then 
the buffer will fluctuate between playing and not playing at an interval of 5 seconds at a certain point in 
traffic. The following statistics to verify the hypothesis are gathered. 

 
Buffer size of the Client.  There are two buffer sizes that are gathered.  One of them is the size of the buffer 
in terms of the number of frames between the frame that is about to be played and the last frame in the 
buffer.  The other is the size of the buffer in terms of frames that are playable over the same range as 
before.  This is an indication as to how many frames are missing in the buffer. 
 
Skipped frames.  This is how many frames are skipped because the buffer is too small to play. 
Wait time.  This is calculated as the time between when the server creates the frame and the time it is fully 
received by the client 
 
Run Length and number of runs.  This is the length of frames being run continuously or being missed 
continuously.  For example when 10 frames are played then at the 11 one it is missing a run of 10 has 
occurred.  This indicates the quality of the stream.  Note that run length was capped off at 50 at which it 
starts counting again. 
 
Played Frames and Percentage of frames that are playable.  This tracks how many frames are played over 
the same period over different network configurations. 
 

To verify the original hypothesis the simulator would be tested under various buffer sizes to see if 
the 5-second choppiness could be generated.  Figure 3-12 show the buffer sizes and run length for the 
different frame rates.  The 45ms is just before congestion and the 30ms is at heavy congestion.  When 
congestion rises the following is observed.   The higher the congestion the lower the total buffer size to 
playable buffer size.  This is further verified by the run length.  At heavy congestions very few full frames 
are transmitted correctly.  At 30ms the buffer becomes so far behind it is flushed.  This can be observed as 
the buffer size drops to 0 for a while. 

The reason for this happening is that in heavy congestion the buffers are nearly always full.  So 
when trying to send a message only some of the fragments can be entered into a buffer so most of the 
messages are not correctly sent.  This is verified by figure 13 and 14 at which as the congestion gets heavier 
the number of packets sent correctly gets lower.  To mitigate the fragmentation the data is sent only if it 
was possible to send it unfragmented.  The end results of this is under congestion every nth frame would be 
sent similar to run length as shown by Figure 19,20.  However the overall performance of not fragmenting 
the frames is shown by Figure 16-18 to be higher. 

However after the first run of variable congestions (45-30ms) the it seem that it is unlikely that the 
original hypothesis is correct.  Under heavy congestion there is no sign of having a buffer under run for 5 
seconds.  Its seems that unless the access point implements some sort of buffer flush, the 5 second under 
run can not be caused by any buffering in any of the lower levers of 802.11. 

At this point a packet sniffer is used to see what the network traffic looks like.  The first thing that 
is noticed is that the traffic is TCP not UDP.  But even with TCP acks, windowing and rate control it 
wouldn’t account for 5 second under runs.  The new hypothesis is that the buffer under runs is caused at the 
application level. 
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There must be a reason that the application would prefer to send video data at 5 second intervals 
rather then send out every nth frame.  An examination of video compression can explain this.  MPEG video 
compression sends 3 kinds of frames.  I-Frames (intraframes) stores the full frame as a compressed picture.  
B-frames (bi-directional) and P-frames (predictive) are based on motion prediction from the I-Frames.  It 
seems reasonable that in the application level having only every second frame being sent would be 
pointless because each frame requires the one before it (except I Frames).  In order to display any sort of 
video a group of frames would have to be sent over correctly together.  If only every second frame is sent it 
is likely that nothing would be displayed. 

So that explains why there are 5 second under runs.  The application takes a look at the congestion 
(can be done under blocking UDP calls too).  At some point it time the application realizes that for the next 
few seconds it will be unable to send the data quickly enough.  Because it has some logic that tells it that it 
must send frames over in chunks it simply advances its own clock and sends data that is several seconds 
ahead.  Even though a gap will happen at the client some data will get played which is better then nothing. 
 
5. Future Work 
 

It is not possible to fully verify the new hypothesis without doing actual testing of video streaming.  
Later on any protocol used in the simulator might be implement in the video streaming sever to verify that 
the hypothesis is correct. 
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Figure 3. 
 

Run Length vs Time  (30ms)
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Figure 4. 
 
 

Buffer Size vs Time (33ms)
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Figure 5.
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Run Length vs Time (33ms)
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Figure 6. 

Buffer Size vs Time (37ms)
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Figure 7. 

Run Length vs Time (37ms)
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Figure 8. 

 10



Buffer Size vs Time (40ms)
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 Figure 9. 
 
 
 Run Length vs Time (40ms)
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Figure 10.  
 
 Buffer Size vs Time (45ms)
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Figure 11. 
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Run Length vs Time (45ms)
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 Figure 12. 
 
 

Played Frames vs time  (all)
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Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. 
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Figure 15.  
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Figure 16. 

Figure 17. 

Percentage of Played Frames NoFrag (All)
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Figure 18. 
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Buffer Size vs Time NoFrag  (37ms)
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Figure 19. 

Run Length vs Time NoFrag (37ms)
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